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ASYMPTOTIC THEORY OF CHEMICALLY UNSTABLE LAYER CLOSE TO A PERFECTLY 
CATALYTIC WALL* 

M. S. BENILOV and G. A. TIRSKII 

The statement and asymptotic solution of the problem of ionization equilibrium de- 

viation near a perfectly catalytic wall in a weakly ionized gas is considered.Ratios 

of the unperturbed recombination length to the gas temperature variation scale and 

of the characteristic temperature of gas to the ionization potential are taken as 

the small parameters. The nonequilibrium layer is analyzed in detail using the 

method of merging asymptotic expansions in a small parameter. The physical meaning 

of obtained results is discussed. 

The investigation of chemically unbalanced flows of gas was the subject of numerous pub- 

lications in connection with the determination of volt-ampere characteristics of the boundary 

layer of electrodes and, also, in connection with problems of external aerodynamics (see, e.g. 

/l-44/). The majority of published papers contain mainly the results of numerical calculations. 

There are also papers dealing with the asymptotic theory of nonequilibrium flows at low 

Damkeler numbers /5,6/. The asymptotic theory is considered here in the opposite limit case 

of high Damkeler numbers, when the flow of gas in the outer part of the gasdynamic boundary 

layer is in chemical equilibrium. 

1. Statement of the problem. Let us consider the following simple model. A plane 

perfectly catalytic surface borders on a weakly ionized gas containing a neutral basic compon- 

ent, atoms and ions of an easily ionized additive, and electrons. The ionization of the 

additive atoms is effected by an electron impact; at recombination the third body is the 

electron. The condition of quasineutrality is assumed satisfied throughout the volume of gas. 

For simplicity of exposition we assume that the gas is, as a whole, quiescent and that the 

temperature distribution is defined by a fairly smooth function of the y-coordinate (the y- 

axis is normal to the wall); as the distance from the wall increases, the gas temperature ap- 

proaches a constant value. 

For the determination of the quasineutral molar concentration of charged particiles r we 

have on the above assumptions the following nonlinear boundary value problem /1,7/: 

y = 0. 5 -= 0; y-f =,x--t&<. 

where n, is the quasineutral concentration of charged particles, R is the over-all concentra- 

tion of gas particles, n,,. is the local chemically stable quasineutral concentration of 

charged particles, D is the coefficient of ambipolar diffusion, and k, is the constant of 

the recombination rate. The subscript OQ denotes here and below quantities at some distance 

from the wall. 

We oass to normalized variables 9 = g/L and z = z/z,, (L is the characteristic 

scale of gas temperature variation), and rewrite problem (1.1) in the form: 

x (a~')' = bz (z” - f) 

q=o,z=o;q-+m,z+1 

where the prime indicates differentiation with respect to 11, and the quantity 

ing of the local recombination length. 

cl has the mean- 

Assuming for simplicity that the gas presssure and the molar concentration of atoms of 
the additive are constant, for function r in conformity with the Saha equation we have 

(1.2) 

(1.3) 

r = f_r/.e-f, k=_i,T, t=mq, 
I i-n 

m=-, q=. 
m 

where Tis the gas temperature, k is the Boltzmann constant, and I is the ionization potential 

of atoms of the additive. 
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The dimensionless temperature 6 of gas is assumed to be specified by a monotonically 
increasing function of the q-coordinate. The quantities a and b are known functions of 
the gas temperature also specified by functions of the q-coordinate. The problem (1.21, 
(1.3) thus contains as coefficients the specified functions a($, b(q), and 8 (q) , and the 
specified parameters x and m. 

2. The asymptotic formulation. In the particular case of constant gas temperature 
(i.e. without allowance for the wall cooling effect) a= b ET 1 the problem (1.21, (1.3) 
has an exact analytic solution /1,8/, which does not exist in the general case of variable 
temperature. 

In many practically interesting cases parameter x is small, and the problem (1.2), (1.3) 
may be considered to belong to the type of singularly perturbed (e.g., when the characteristic 
conditions in a MGD generator are T, = 27OOK, L = 1 cm, pressure 1 atm, molar concentra- 
tion of the additive (atoms of potassium) l%, andD, =Icm'/s we have x = 3.4.10-8 and m = 9.3). 
An effective method of analyzing problems of this type is that of external and internal asymp- 
totic expansions in a small parameter /9/. The first term of the asymptotic expansion of 
problem (1.21, (1.3) solution is the well known solution that corresponds to chemical equili- 
brium throughout the layer. The internal problem was, as far as the authors are aware, not 
previously considered in literature. 

Asymptotic formulation of the considered problem essentially depends on the wall tempera- 
ture. In the case of a "hot" wall whose temperature is so high that the corresponding molar 
concentration of charged particles is of the same order of magnitude as that of unperturbed 
concentration far away from the wall (i.e. rur = O(1), where the subscript w denotes quantit- 
ies at the wall),parameter x is the single small parameter of the problem. In the case of a 
"cold" wall, when r,< 1 (for instance, if T, = SOOK is assumed in the indicated above con- 
ditions, we have rrn = 5.6.10-"), it is necessary to introduce besides parameter one more 
small parameter related to ru. in the asymptotic formulation of the problem. The most natural 
is to use the parameter m-l as the small parameter. Note that a small parameter of this type 
is basic in the combustion theory /lo/. 

The analysis of the two indicated limit cases enables us to investigate the whole range 
of the wall temperature variation. 

3. The hot wall limit (1'0). We seek an external asymptotic expansion of the 
solution of problem (1.21, (1.3) of the form 

2 (11; x) = Zl ("(1) + ". (3.1) 

whose substitution into Eq. (1.2) yields 21 = r (1). 
The internal expansion is of the form 

2 (9; x) =zz (11?) + . . .; % = 9/ I4 
Its substitution into Eq. (1.2) yields 

a,d2z1 / dqe2 = b,z, (z2” - rw2) (3.2) 

for which the boundary condition at the wall is the same as the first of conditions (1.3) and 
the boundary condition at infinity is the following condition of merging with the external 
expansion (3.1) : 

q2 = 0, z2 = 0; 11% --f =, 3 -+ rlD (3.3) 

The solution of the problem (3.2), (3.3) in the initial variables, has the form /1,8/ 

I = z,,, th (y / d,) (3.4) 
The governing factor for the calculation of volt-ampere characteristics of electric probes 

in plasma and of electrodes is the magnitude of the derivative of the quasineutral molar con- 
centration of charged particles /7,11/. Differentiating (3.4) we obtain 

1 dy), = x,, / 4, (3.5) 

4. The cold wall limit (x-+-O, m-l-0). Depending on the relation between the orders 
of magnitude of the small parameters x and m-lwe have three limit cases: 

ml In y-l -+ k,, ml In y-'-f 0, ml In y-'-f ~0 

where kI is some specified positive constant, and the small parameter y =v(x) is related 
to parameter x as follows: 

y = x1/~ ln y-l 

The solution of this nonlinear algebraic equation is of the form 

4.1. m/h y-‘-+/i,. The external expansion can be calculated directly 
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z(q;x,m)=r 1+--f- 
-i 2b@ 

(kIq’)2exp [- 2 (In y-l - mq)] + . . .) (4.1) 

The region of this expansion applicability is evidently bounded by the condition 

In y-l - mq + co (4.2) 

since its nonfulfillment violates the assumption that the second term of expansion (4.1) is 
small as compared to the first, an assumption that is basic in the derivation of that expans- 
ion. This shows that the structure of solution of this problem substantially depends on the 
value of k,q,. When k,q,<l condition (4.2) is satisfied for all q > 0; expansion (4.1) is 
applicable for q>O. When kIqul=i condition (4.2) is satisfied for q>O and expansion 
(4.1) is applicable for q> 0. In the case of kIqtp>l condition (4.2) is satisfied for 

?>%I where ?h is the solution of equation kIq(G) = 1 and expansion (4.1) is applicable 
for i > q8. 

4.1.1. kzqw< 1. The internal expansion is of the form 

2 (q; x, m) = exp (-mqw) zI (Q)+...; rjs = q In y-‘exp (Iny-' - rnqd 

For function zz we obtain the boundary value problem similar to problem (3.2), (3.3). In 
input variables we again obtain formulas (3.4) and (3.5). 

4.1.2. k,q, = 1. We introduce the parameter f(~,m)=Iny-'- mqs. Obviously f = o(m). 
Depending on the behavior of the small parameters x and m-l we have the following cases: a) 

f++m, b) f-tk,, and c) f-+--00 (kz is some specified constant). 
4.1.2. (a) f+ -km This case is entirely analogous to 4.1.1, and everything said 

about the latter holds. 
4.1.2. (b) f+ka. The internal expansion is of the form 

z('1;x,m)=sxp(--mq3z,(nA)+...; rlr=qlnP (4.3) 

In the first approximation Eq. (1.2) is of the form 

exp (-2k,) Q,&, / dam = b&, lzda - &,O’/* exp (- 2k,q,‘%)] (4.4) 

Note that this equation may be also obtained by the formal application to Eq. (1.2) of 
the method of exponent expansion known in the combustion theory /lo/. 

We introduce function a using the formula 

a=-+ - ( 1 “bx “L+(_ _!E) 

which defines the relation of the local recombination length to the local scale of variation 
of the quantity t. Note that in the considered limit case a, = 0 (1). The canonical form 
of Eq. (1.2) is 

bz, / d$ = zg lz,z - exp (2 t-k.)1 (4.5) 
Q = - k,q,‘q, - In aw,zi = a,-'O,-'/dz, 

a, = - k,q,‘&-‘14 (a, / b,,,)“* exp (- k,) 

for which the boundary conditions are 

zb = -lna,, z,=o; ~~-+oo, z,-expq,+exp(--q&)/2+... (4.6) 

The last of these conditions is that of merging the internal (4.3) and external (4.1) ex- 
pansions. 

Fig.1 

Curves of function zs (s3 shown in Fig.1 by solid lines for several values of parameter 
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~(lna,=5,3,1, -4) wereobtainedbyexactnumerical solution of the nonlinear boundary value 
problem (4.5], (4.6). The dash line shows the asymptotic behavior of function zg as qs+ 00 
calculated by the second of formulas (4.6). 

In input variables we have 

5 = z,,u~~ [(- dt/ d&y - In a,1 (4.7) 

(dx / dy), = ICYa,+,, 1 d,, 9 = (& 1 W. 

The curve of function $ = +(a,) is also shown in Fig.1, where the dash lines indicate 
its behavior determined by asymptotic formulas with low and high values of parameter 1,. It 
can be shown that these expressions are of the form 

$ = 2-'iy~~-~,a,-t 0; $ = ~DP(2-'/*) ln+aul, aW+ 00 (4.8) 

where K(2-'1:) = 1.8541 is a complete elliptic integral of the first kind in the normal Legendre 
form /12/. 

4.1.2. (c) j+-oo. In this case the discontinuity region cannot be defined by a 
single asymptotic expansion, although it is asymptotically fine. It is necessary to consider 
two expansions one of which holds in the recombination layer directly adjacent to the wall, 
and the other in the transition layer between the recombination layer and the chemically stable 
region. Expansion of the intermediate layer is of the form 

e (q; x, m) = Y% (q,) + . . . . 'Is = ('I - Qln y-1 

where 6 denotes the root of the algebraic equation a(&) = 1. 
Since a-00 as q-O,a-+O as q-m , and a'<O, the solution of this equation exists 

and is unique; it can be shown that 8 = 0 (f 1 m) = 0 (4). Note that the quantity in the right-hand 
side of this equation may be taken equal not only to unity but to any other constant quantity. 
The selection of that constant other than unity results only in a shift of the reference point 
of the qr -coordinate. 

In the first approximation Eq. (1.21, after the substitution of variables 

'16 = q;l(- k,q,'), zo = - k,q,' (4, / b,)"#a7 

reduces to the canonical form coinciding with (4.5) (except for the substitution of subscript 
7 for 5). As q,+co the boundary condition for function 2, is the same as the second of 
conditions (4.6). The second boundary condition specifies the absence of singularities as 
q7+-*. 

The curve of function z,(q,) appears in Fig.1 in the form of a dash-dot line. It can be 
shown that the asymptotics of that function are of the form z, = -_1/2/qr as q7h-a. 

In input variable for the molar concentration in the transition layer we have 

z=z&rIl/2(y-yyc)Jd~l (4.9) 

Expansion of the recombination layer is of the form 

z(q; x,m) = ~~~-'z,(qs) f...; qa = q/6<1 
In the first approximation Eq. (1.2) assumes the form 

a,&,/dq,2 = b,& (4.10) 

whose boundary condition for qa= 0 is the same as the first of conditions (1.3), and the 
boundary condition as qB-+i is obtained from the condition of merging with the expansion of 
the transition layer 

1)s = 0, 28 = 0; qa+l, 28 N (26 / b,)+ (1 - 18)-l + . . . (4.11) 

Solving problem (4.10], (4.11) in input variables for the molar concentration in the recombina- 
tion layer and of the derivative of molar concentration at the wall we obtain 

(dz / dy), = K= (2-9 (6 1 Yak% f Yb 

(4.12) 

(4.13) 

where cn is the Jacobi elliptic function/12/. 
4.1.3. k&> 1. As previously indicated, the external expansion (4.1) is applicable when 

q> q.. The nonuniformity region contains an asymptotically thin transition layer and a recomb- 
ination layer of thickness qs = O(1). The expansion of the transition layer is of the form 

2 (q; i 4 = yh (q3 + .-.; ‘10 = (q - qaI) In y-l 

where qal denotes the root of the algebraic equation a(qal) =I; it can be shown that qrl= 
qr + 0 (1). The problem for zp is analogous to that for function z,. Using input variabl- 

es we again obtain formula (4.9), if we substitute in the latter subscript si for 8. 
Expansion of the recombination layer, which is applicable when q<q,, is of the form 

z(q; x,m) = V/x%l (q) + ... 
For function %I we obtain the problem 
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(d I dg) (adz,, I dq) = bz,03 
q = 0, z,. 7 0; q - qs, ZIO - (Za, / b,)‘l~ (11s - II)-’ + ... 

which is generally a nonlinear boundary value problem with variable coefficients, has no analy- 

tic solution, and has to be solved numerically. 

4.2. 7n /In y-r+ 0. In this case the solution of the problem is entirely analogous to 

that considered in 4.1.1. 

4.3. m/lny-'em. Here the solution of the problem substantially depends on the charact- 

er of damping of function q(q) as 1) -+ 00. Here, the analysis is restricted to the case of 

exponential damping 

11_fw, 4 (rl) - k, exp (- kaq) -t . . . 

where k3 and k, are arbitrary positive constants. 

We denote by o the root of the equation a (0)) = 1. It can be shown that 0-l = o(1). We 

assume for simplicity that the expression 

m [Q (q) - k, exp (- k~)] 

approaches at the limit X-+O,m-'+O (with (qn = 'I/ 61 fixed) zero. For 01 we can obtain 

the following expression: 

B=llIl mks 
k, -i-&$7$+4~)1 hly- 

The external expansion 

z (q; x, m) = exp {In (k4y) exp Ik,w (1 - q,,)l) i . . 

can be calculated directly. This expansion is valid for qll> i. Expansion of the transition 

layer is of the form 
z (11; x. 171) mu 1;Zm (lh2) f . . . . lllV ; ('1 - (0) 111 17-1 

The problem for ZI? is analogous to that for function 2;. Hence 

zl* : k,Zi @,I\,,) 

Using the input variables for the molar concentration in the transition layer we again 

obtain formula (4.9) by substituting in the latter subscript o for 6. 

Expansion for the recombination layer, valid when '111 < 1 I is of the form 

B (I); x, UL) 11 ~w-~z,~ (Illlj + . . (4.14) 

In the first approximation Eq. (1.2) assumes the form 

d%,, I dqll? = zlz3 (4.15) 

whose solution that satisfies the condition of merging as '111 - 1 is zero when qn = 0, and 

in input variables is again given by formula (4.12) in which subscript o is substituted for 6. 

Note that when qll = 0(0-r) functions a and b generally differ from unity, and Eq. (4.15) 

is no longer a good approximation of Eq. (1.2). Thus there exists between the recombination 
layer and the wall in this case a transition region (chemically frozen layer) of thicknessO(1). 

A solution valid in that region is of the form 

.z (11; x, m) = v,o-* 214 (q) -F- . (4.16) 
For function 211 we obtain the boundary value problem 

(d / dq) (adz,, / dq) = 0 
(4.17) 

T) = 0, ??I4 = 0; 1, -+ M , Z14 - I/zY’ (2-99 q t- . . . 

(the last condition relates to the merging of expansions (4.14) and (4.16)). 

Solving the problem (4.17) for molar concentration in the frozen layer and for the deriva- 

tive of molar concentration at the wall in input variables, we obtain 

5. Discussion of results. The asymptotic solutions obtained in Sects.3 and 4 have 
a clear physical meaning. When the wall temperature is so high that the respective local re- 

combination length is considerably smaller than the characteristic scale of the function varia- 
tion f (i.e. parameter a, is considerably less than unity), a layer is formed near the wall, 

where transition from the chemically stable concentration of charged particles at the wall temp- 

erature at the external boundary of the layer to zero concentration on the wall takes place. 

The chemically stable charged particle concentration in the layer is in the first approximation 
stable, since the scale of that concentration variation is the same as that of variation of fun- 

ction t . The charged particle concentration distribution in the transition layer is deter- 

mined by function th. The terms that define ionization, recombination, and diffusion in the 

layer are of the same order of magnitude. The thickness of the layer is equal several local 
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recombination lengths. 

As the wall temperature decreases the respective chemically stable concentration decreas- 

es, while the local recombination length increases. As that length becomes comparable to the 
characteristic scale of variation of function t near the surface (i.e. parameter a,,. becomes 
comparable to unity), the chemically stable concentration of charged particles in the transi- 

tion layer can no longer be assumed constant, and the structure of the layer changes. The 
concentration distribution of charged particles in the layer is defined by function 3i which 
parametrically depends on a,.. 

With further lowering of the wall temperature the transition layer thickness continues 

to increase, and when parameter a,, markedly exceeds unity, the transition layer moves away 
from the wall in whose immediate vicinity a recombination layer is formed. The recombination 
layer is now in the neighborhood of point y,,, where the local recombination length is equal 
to the local scale of the chemically stable charged particle concentration. From the physical 
point of view this condition is fully understandable, since when the local recombination length 
becomes comparable to the smallest of the characteristic local scales, there is no reason for 

expecting equilibrium. The charged particle concentration distribution in the transition lay- 
er is defined by the universal function 2,. As in previous cases, the transition layer thick- 
ness is equal to the thickness of several local recombination lengths, and is considerably 

smaller than the characteristic scale of gas temperature variation. The terms that define 
ionization, recombination, and diffusion are in that layer of the same order of magnitude. 

Since in the recombination layer the term which defines ionization is small, it can be 

omitted in the first approximation. The recombination layer thickness is determined by the 

position of point Y:1 and, depending on parameters x and m and the gas temperature distribu- 

tion, can be small, large (compared to the characteristic scale of gas temperature variation), 

or be of order unity. In the first two cases the equation of the recombination layer can be 

solved analytically for any arbitrary dependence of coefficients of the ambipolar diffusion 

and recombination on the gas temperature. In the third case it is generally necessary to re- 

sort to numerical methods for solving this equation. 

When the recombination layer thickness considerably exceeds the characteristic scale of 

the gas temperature variation it is, generally, necessary to introduce in the analysis the 
chemically frozen layer of thickness of the order of the characteristic scale of gas tempera- 

ture variation, directly adhereing to the wall. The terms that define ionization and recombin- 
ation are small and can be omitted in the first approximation. The obtained equation can be 
solved analytically for any arbitrary dependence of the ambipolar diffusion coefficient on 

temperature. 

It is important to note that the asymptotic solutions obtained for various limit cases 

are in agreement when passing to limit from one to another. Thus the dependence of the deriva- 

tive of molar concentration of charged particles at the wall on parameter ac, which is defin- 

ed by formula (4.7) at transition to limits OL,,. -- 0 and CL,~-~W with allowance for formulas 
(4.8) is in agreement with formulas (3.5) and (4.13). 
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